
Chapter 1

Introduction: Some
Representative Problems

1.1 A First Problem: Stable Matching
As an opening topic, we look at an algorithmic problem that nicely illustrates

many of the themes we will be emphasizing. It is motivated by some very

natural and practical concerns, and from these we formulate a clean and

simple statement of a problem. The algorithm to solve the problem is very

clean as well, and most of our work will be spent in proving that it is correct

and giving an acceptable bound on the amount of time it takes to terminate

with an answer. The problem itself—the Stable Matching Problem—has several

origins.

The Problem

The Stable Matching Problem originated, in part, in 1962, when David Gale

and Lloyd Shapley, two mathematical economists, asked the question: Could

one design a college admissions process, or a job recruiting process, that was

self-enforcing? What did they mean by this?

To set up the question, let’s first think informally about the kind of situation

that might arise as a group of friends, all juniors in college majoring in

computer science, begin applying to companies for summer internships. The

crux of the application process is the interplay between two different types

of parties: companies (the employers) and students (the applicants). Each

applicant has a preference ordering on companies, and each company—once

the applications come in—forms a preference ordering on its applicants. Based

on these preferences, companies extend offers to some of their applicants,

applicants choose which of their offers to accept, and people begin heading

off to their summer internships.

2 Chapter 1 Introduction: Some Representative Problems

Gale and Shapley considered the sorts of things that could start going

wrong with this process, in the absence of any mechanism to enforce the status

quo. Suppose, for example, that your friend Raj has just accepted a summer job

at the large telecommunications company CluNet. A few days later, the small

start-up company WebExodus, which had been dragging its feet on making a

few final decisions, calls up Raj and offers him a summer job as well. Now, Raj

actually prefers WebExodus to CluNet—won over perhaps by the laid-back,

anything-can-happen atmosphere—and so this new development may well

cause him to retract his acceptance of the CluNet offer and go to WebExodus

instead. Suddenly down one summer intern, CluNet offers a job to one of its

wait-listed applicants, who promptly retracts his previous acceptance of an

offer from the software giant Babelsoft, and the situation begins to spiral out

of control.

Things look just as bad, if not worse, from the other direction. Suppose

that Raj’s friend Chelsea, destined to go to Babelsoft but having just heard Raj’s

story, calls up the people at WebExodus and says, “You know, I’d really rather

spend the summer with you guys than at Babelsoft.” They find this very easy

to believe; and furthermore, on looking at Chelsea’s application, they realize

that they would have rather hired her than some other student who actually

is scheduled to spend the summer at WebExodus. In this case, if WebExodus

were a slightly less scrupulous company, it might well find some way to retract

its offer to this other student and hire Chelsea instead.

Situations like this can rapidly generate a lot of chaos, and many people—

both applicants and employers—can end up unhappy with the process as well

as the outcome. What has gone wrong? One basic problem is that the process

is not self-enforcing—if people are allowed to act in their self-interest, then it

risks breaking down.

We might well prefer the following, more stable situation, in which self-

interest itself prevents offers from being retracted and redirected. Consider

another student, who has arranged to spend the summer at CluNet but calls

up WebExodus and reveals that he, too, would rather work for them. But in

this case, based on the offers already accepted, they are able to reply, “No, it

turns out that we prefer each of the students we’ve accepted to you, so we’re

afraid there’s nothing we can do.” Or consider an employer, earnestly following

up with its top applicants who went elsewhere, being told by each of them,

“No, I’m happy where I am.” In such a case, all the outcomes are stable—there

are no further outside deals that can be made.

So this is the question Gale and Shapley asked: Given a set of preferences

among employers and applicants, can we assign applicants to employers so

that for every employer E, and every applicant A who is not scheduled to work

for E, at least one of the following two things is the case?

1.1 A First Problem: Stable Matching 3

(i) E prefers every one of its accepted applicants to A; or

(ii) A prefers her current situation over working for employer E.

If this holds, the outcome is stable: individual self-interest will prevent any

applicant/employer deal from being made behind the scenes.

Gale and Shapley proceeded to develop a striking algorithmic solution to

this problem, which we will discuss presently. Before doing this, let’s note that

this is not the only origin of the Stable Matching Problem. It turns out that for

a decade before the work of Gale and Shapley, unbeknownst to them, the

National Resident Matching Program had been using a very similar procedure,

with the same underlying motivation, to match residents to hospitals. Indeed,

this system, with relatively little change, is still in use today.

This is one testament to the problem’s fundamental appeal. And from the

point of view of this book, it provides us with a nice first domain in which

to reason about some basic combinatorial definitions and the algorithms that

build on them.

Formulating the Problem To get at the essence of this concept, it helps to

make the problem as clean as possible. The world of companies and applicants

contains some distracting asymmetries. Each applicant is looking for a single

company, but each company is looking for many applicants; moreover, there

may be more (or, as is sometimes the case, fewer) applicants than there are

available slots for summer jobs. Finally, each applicant does not typically apply

to every company.

It is useful, at least initially, to eliminate these complications and arrive at a

more “bare-bones” version of the problem: each of n applicants applies to each

of n companies, and each company wants to accept a single applicant. We will

see that doing this preserves the fundamental issues inherent in the problem;

in particular, our solution to this simplified version will extend directly to the

more general case as well.

Following Gale and Shapley, we observe that this special case can be

viewed as the problem of devising a system by which each of n men and

n women can end up getting married: our problem naturally has the analogue

of two “genders”—the applicants and the companies—and in the case we are

considering, everyone is seeking to be paired with exactly one individual of

the opposite gender.1

1 Gale and Shapley considered the same-sex Stable Matching Problem as well, where there is only a

single gender. This is motivated by related applications, but it turns out to be fairly different at a

technical level. Given the applicant-employer application we’re considering here, we’ll be focusing

on the version with two genders.

4 Chapter 1 Introduction: Some Representative Problems

w

m� w�

m

An instability: m and w�

each prefer the other to

their current partners.

Figure 1.1 Perfect matching

S with instability (m, w′).

So consider a set M = {m1, . . . , mn} of n men, and a set W = {w1, . . . , wn}

of n women. Let M × W denote the set of all possible ordered pairs of the form

(m, w), where m ∈ M and w ∈ W. A matching S is a set of ordered pairs, each

from M × W, with the property that each member of M and each member of

W appears in at most one pair in S. A perfect matching S′ is a matching with

the property that each member of M and each member of W appears in exactly

one pair in S′.

Matchings and perfect matchings are objects that will recur frequently

throughout the book; they arise naturally in modeling a wide range of algo-

rithmic problems. In the present situation, a perfect matching corresponds

simply to a way of pairing off the men with the women, in such a way that

everyone ends up married to somebody, and nobody is married to more than

one person—there is neither singlehood nor polygamy.

Now we can add the notion of preferences to this setting. Each man m ∈ M

ranks all the women; we will say that m prefers w to w′ if m ranks w higher

than w′. We will refer to the ordered ranking of m as his preference list. We will

not allow ties in the ranking. Each woman, analogously, ranks all the men.

Given a perfect matching S, what can go wrong? Guided by our initial

motivation in terms of employers and applicants, we should be worried about

the following situation: There are two pairs (m, w) and (m′, w′) in S (as

depicted in Figure 1.1) with the property that m prefers w′ to w, and w′ prefers

m to m′. In this case, there’s nothing to stop m and w′ from abandoning their

current partners and heading off together; the set of marriages is not self-

enforcing. We’ll say that such a pair (m, w′) is an instability with respect to S:

(m, w′) does not belong to S, but each of m and w′ prefers the other to their

partner in S.

Our goal, then, is a set of marriages with no instabilities. We’ll say that

a matching S is stable if (i) it is perfect, and (ii) there is no instability with

respect to S. Two questions spring immediately to mind:

. Does there exist a stable matching for every set of preference lists?

. Given a set of preference lists, can we efficiently construct a stable

matching if there is one?

Some Examples To illustrate these definitions, consider the following two

very simple instances of the Stable Matching Problem.

First, suppose we have a set of two men, {m, m′}, and a set of two women,

{w, w′}. The preference lists are as follows:

m prefers w to w′.

m′ prefers w to w′.

1.1 A First Problem: Stable Matching 5

w prefers m to m′.

w′ prefers m to m′.

If we think about this set of preference lists intuitively, it represents complete

agreement: the men agree on the order of the women, and the women agree

on the order of the men. There is a unique stable matching here, consisting

of the pairs (m, w) and (m′, w′). The other perfect matching, consisting of the

pairs (m′, w) and (m, w′), would not be a stable matching, because the pair

(m, w) would form an instability with respect to this matching. (Both m and

w would want to leave their respective partners and pair up.)

Next, here’s an example where things are a bit more intricate. Suppose

the preferences are

m prefers w to w′.

m′ prefers w′ to w.

w prefers m′ to m.

w′ prefers m to m′.

What’s going on in this case? The two men’s preferences mesh perfectly with

each other (they rank different women first), and the two women’s preferences

likewise mesh perfectly with each other. But the men’s preferences clash

completely with the women’s preferences.

In this second example, there are two different stable matchings. The

matching consisting of the pairs (m, w) and (m′, w′) is stable, because both

men are as happy as possible, so neither would leave their matched partner.

But the matching consisting of the pairs (m′, w) and (m, w′) is also stable, for

the complementary reason that both women are as happy as possible. This is

an important point to remember as we go forward—it’s possible for an instance

to have more than one stable matching.

Designing the Algorithm

We now show that there exists a stable matching for every set of preference

lists among the men and women. Moreover, our means of showing this will

also answer the second question that we asked above: we will give an efficient

algorithm that takes the preference lists and constructs a stable matching.

Let us consider some of the basic ideas that motivate the algorithm.

. Initially, everyone is unmarried. Suppose an unmarried man m chooses

the woman w who ranks highest on his preference list and proposes to

her. Can we declare immediately that (m, w) will be one of the pairs in our

final stable matching? Not necessarily: at some point in the future, a man

m′ whom w prefers may propose to her. On the other hand, it would be

6 Chapter 1 Introduction: Some Representative Problems

w

m�

m

Woman w will become

engaged to m if she

prefers him to m�.

Figure 1.2 An intermediate

state of the G-S algorithm

when a free man m is propos-

ing to a woman w.

dangerous for w to reject m right away; she may never receive a proposal

from someone she ranks as highly as m. So a natural idea would be to

have the pair (m, w) enter an intermediate state—engagement.

. Suppose we are now at a state in which some men and women are free—

not engaged—and some are engaged. The next step could look like this.

An arbitrary free man m chooses the highest-ranked woman w to whom

he has not yet proposed, and he proposes to her. If w is also free, then m

and w become engaged. Otherwise, w is already engaged to some other

man m′. In this case, she determines which of m or m′ ranks higher

on her preference list; this man becomes engaged to w and the other

becomes free.

. Finally, the algorithm will terminate when no one is free; at this moment,

all engagements are declared final, and the resulting perfect matching is

returned.

Here is a concrete description of the Gale-Shapley algorithm, with Fig-

ure 1.2 depicting a state of the algorithm.

Initially all m ∈ M and w ∈ W are free

While there is a man m who is free and hasn’t proposed to

every woman

Choose such a man m

Let w be the highest-ranked woman in m’s preference list

to whom m has not yet proposed

If w is free then

(m, w) become engaged

Else w is currently engaged to m′

If w prefers m′ to m then

m remains free

Else w prefers m to m′

(m, w) become engaged

m′ becomes free

Endif

Endif

Endwhile

Return the set S of engaged pairs

An intriguing thing is that, although the G-S algorithm is quite simple

to state, it is not immediately obvious that it returns a stable matching, or

even a perfect matching. We proceed to prove this now, through a sequence

of intermediate facts.

1.1 A First Problem: Stable Matching 7

Analyzing the Algorithm

First consider the view of a woman w during the execution of the algorithm.

For a while, no one has proposed to her, and she is free. Then a man m may

propose to her, and she becomes engaged. As time goes on, she may receive

additional proposals, accepting those that increase the rank of her partner. So

we discover the following.

(1.1) w remains engaged from the point at which she receives her first

proposal; and the sequence of partners to which she is engaged gets better and

better (in terms of her preference list).

The view of a man m during the execution of the algorithm is rather

different. He is free until he proposes to the highest-ranked woman on his

list; at this point he may or may not become engaged. As time goes on, he

may alternate between being free and being engaged; however, the following

property does hold.

(1.2) The sequence of women to whom m proposes gets worse and worse (in

terms of his preference list).

Now we show that the algorithm terminates, and give a bound on the

maximum number of iterations needed for termination.

(1.3) The G-S algorithm terminates after at most n2 iterations of the While

loop.

Proof. A useful strategy for upper-bounding the running time of an algorithm,

as we are trying to do here, is to find a measure of progress. Namely, we seek

some precise way of saying that each step taken by the algorithm brings it

closer to termination.

In the case of the present algorithm, each iteration consists of some man

proposing (for the only time) to a woman he has never proposed to before. So

if we let P(t) denote the set of pairs (m, w) such that m has proposed to w by

the end of iteration t, we see that for all t, the size of P(t + 1) is strictly greater

than the size of P(t). But there are only n2 possible pairs of men and women

in total, so the value of P(·) can increase at most n2 times over the course of

the algorithm. It follows that there can be at most n2 iterations.

Two points are worth noting about the previous fact and its proof. First,

there are executions of the algorithm (with certain preference lists) that can

involve close to n2 iterations, so this analysis is not far from the best possible.

Second, there are many quantities that would not have worked well as a

progress measure for the algorithm, since they need not strictly increase in each

8 Chapter 1 Introduction: Some Representative Problems

iteration. For example, the number of free individuals could remain constant

from one iteration to the next, as could the number of engaged pairs. Thus,

these quantities could not be used directly in giving an upper bound on the

maximum possible number of iterations, in the style of the previous paragraph.

Let us now establish that the set S returned at the termination of the

algorithm is in fact a perfect matching. Why is this not immediately obvious?

Essentially, we have to show that no man can “fall off” the end of his preference

list; the only way for the While loop to exit is for there to be no free man. In

this case, the set of engaged couples would indeed be a perfect matching.

So the main thing we need to show is the following.

(1.4) If m is free at some point in the execution of the algorithm, then there

is a woman to whom he has not yet proposed.

Proof. Suppose there comes a point when m is free but has already proposed

to every woman. Then by (1.1), each of the n women is engaged at this point

in time. Since the set of engaged pairs forms a matching, there must also be

n engaged men at this point in time. But there are only n men total, and m is

not engaged, so this is a contradiction.

(1.5) The set S returned at termination is a perfect matching.

Proof. The set of engaged pairs always forms a matching. Let us suppose that

the algorithm terminates with a free man m. At termination, it must be the

case that m had already proposed to every woman, for otherwise the While

loop would not have exited. But this contradicts (1.4), which says that there

cannot be a free man who has proposed to every woman.

Finally, we prove the main property of the algorithm—namely, that it

results in a stable matching.

(1.6) Consider an execution of the G-S algorithm that returns a set of pairs

S. The set S is a stable matching.

Proof. We have already seen, in (1.5), that S is a perfect matching. Thus, to

prove S is a stable matching, we will assume that there is an instability with

respect to S and obtain a contradiction. As defined earlier, such an instability

would involve two pairs, (m, w) and (m′, w′), in S with the properties that

. m prefers w′ to w, and

. w′ prefers m to m′.

In the execution of the algorithm that produced S, m’s last proposal was, by

definition, to w. Now we ask: Did m propose to w′ at some earlier point in

1.1 A First Problem: Stable Matching 9

this execution? If he didn’t, then w must occur higher on m’s preference list

than w′, contradicting our assumption that m prefers w′ to w. If he did, then

he was rejected by w′ in favor of some other man m′′, whom w′ prefers to m.

m′ is the final partner of w′, so either m′′ = m′ or, by (1.1), w′ prefers her final

partner m′ to m′′; either way this contradicts our assumption that w′ prefers

m to m′.

It follows that S is a stable matching.

Extensions

We began by defining the notion of a stable matching; we have just proven

that the G-S algorithm actually constructs one. We now consider some further

questions about the behavior of the G-S algorithm and its relation to the

properties of different stable matchings.

To begin with, recall that we saw an example earlier in which there could

be multiple stable matchings. To recap, the preference lists in this example

were as follows:

m prefers w to w′.

m′ prefers w′ to w.

w prefers m′ to m.

w′ prefers m to m′.

Now, in any execution of the Gale-Shapley algorithm, m will become engaged

to w, m′ will become engaged to w′ (perhaps in the other order), and things

will stop there. Thus, the other stable matching, consisting of the pairs (m′, w)

and (m, w′), is not attainable from an execution of the G-S algorithm in which

the men propose. On the other hand, it would be reached if we ran a version of

the algorithm in which the women propose. And in larger examples, with more

than two people on each side, we can have an even larger collection of possible

stable matchings, many of them not achievable by any natural algorithm.

This example shows a certain “unfairness” in the G-S algorithm, favoring

men. If the men’s preferences mesh perfectly (they all list different women as

their first choice), then in all runs of the G-S algorithm all men end up matched

with their first choice, independent of the preferences of the women. If the

women’s preferences clash completely with the men’s preferences (as was the

case in this example), then the resulting stable matching is as bad as possible

for the women. So this simple set of preference lists compactly summarizes a

world in which someone is destined to end up unhappy: women are unhappy

if men propose, and men are unhappy if women propose.

Let’s now analyze the G-S algorithm in more detail and try to understand

how general this “unfairness” phenomenon is.

10 Chapter 1 Introduction: Some Representative Problems

To begin with, our example reinforces the point that the G-S algorithm

is actually underspecified: as long as there is a free man, we are allowed to

choose any free man to make the next proposal. Different choices specify

different executions of the algorithm; this is why, to be careful, we stated (1.6)

as “Consider an execution of the G-S algorithm that returns a set of pairs S,”

instead of “Consider the set S returned by the G-S algorithm.”

Thus, we encounter another very natural question: Do all executions of

the G-S algorithm yield the same matching? This is a genre of question that

arises in many settings in computer science: we have an algorithm that runs

asynchronously, with different independent components performing actions

that can be interleaved in complex ways, and we want to know how much

variability this asynchrony causes in the final outcome. To consider a very

different kind of example, the independent components may not be men and

women but electronic components activating parts of an airplane wing; the

effect of asynchrony in their behavior can be a big deal.

In the present context, we will see that the answer to our question is

surprisingly clean: all executions of the G-S algorithm yield the same matching.

We proceed to prove this now.

All Executions Yield the Same Matching There are a number of possible

ways to prove a statement such as this, many of which would result in quite

complicated arguments. It turns out that the easiest and most informative ap-

proach for us will be to uniquely characterize the matching that is obtained and

then show that all executions result in the matching with this characterization.

What is the characterization? We’ll show that each man ends up with the

“best possible partner” in a concrete sense. (Recall that this is true if all men

prefer different women.) First, we will say that a woman w is a valid partner

of a man m if there is a stable matching that contains the pair (m, w). We will

say that w is the best valid partner of m if w is a valid partner of m, and no

woman whom m ranks higher than w is a valid partner of his. We will use

best(m) to denote the best valid partner of m.

Now, let S∗ denote the set of pairs {(m, best(m)) : m ∈ M}. We will prove

the following fact.

(1.7) Every execution of the G-S algorithm results in the set S∗.

This statement is surprising at a number of levels. First of all, as defined,

there is no reason to believe that S∗ is a matching at all, let alone a stable

matching. After all, why couldn’t it happen that two men have the same best

valid partner? Second, the result shows that the G-S algorithm gives the best

possible outcome for every man simultaneously; there is no stable matching

in which any of the men could have hoped to do better. And finally, it answers

1.1 A First Problem: Stable Matching 11

our question above by showing that the order of proposals in the G-S algorithm

has absolutely no effect on the final outcome.

Despite all this, the proof is not so difficult.

Proof. Let us suppose, by way of contradiction, that some execution E of the

G-S algorithm results in a matching S in which some man is paired with a

woman who is not his best valid partner. Since men propose in decreasing

order of preference, this means that some man is rejected by a valid partner

during the execution E of the algorithm. So consider the first moment during

the execution E in which some man, say m, is rejected by a valid partner w.

Again, since men propose in decreasing order of preference, and since this is

the first time such a rejection has occurred, it must be that w is m’s best valid

partner best(m).

The rejection of m by w may have happened either because m proposed

and was turned down in favor of w’s existing engagement, or because w broke

her engagement to m in favor of a better proposal. But either way, at this

moment w forms or continues an engagement with a man m′ whom she prefers

to m.

Since w is a valid partner of m, there exists a stable matching S′ containing

the pair (m, w). Now we ask: Who is m′ paired with in this matching? Suppose

it is a woman w′ �= w.

Since the rejection of m by w was the first rejection of a man by a valid

partner in the execution E, it must be that m′ had not been rejected by any valid

partner at the point in E when he became engaged to w. Since he proposed in

decreasing order of preference, and since w′ is clearly a valid partner of m′, it

must be that m′ prefers w to w′. But we have already seen that w prefers m′

to m, for in execution E she rejected m in favor of m′. Since (m′, w) �∈ S′, it

follows that (m′, w) is an instability in S′.

This contradicts our claim that S′ is stable and hence contradicts our initial

assumption.

So for the men, the G-S algorithm is ideal. Unfortunately, the same cannot

be said for the women. For a woman w, we say that m is a valid partner if

there is a stable matching that contains the pair (m, w). We say that m is the

worst valid partner of w if m is a valid partner of w, and no man whom w

ranks lower than m is a valid partner of hers.

(1.8) In the stable matching S∗, each woman is paired with her worst valid

partner.

Proof. Suppose there were a pair (m, w) in S∗ such that m is not the worst

valid partner of w. Then there is a stable matching S′ in which w is paired

12 Chapter 1 Introduction: Some Representative Problems

with a man m′ whom she likes less than m. In S′, m is paired with a woman

w′ �= w; since w is the best valid partner of m, and w′ is a valid partner of m,

we see that m prefers w to w′.

But from this it follows that (m, w) is an instability in S′, contradicting the

claim that S′ is stable and hence contradicting our initial assumption.

Thus, we find that our simple example above, in which the men’s pref-

erences clashed with the women’s, hinted at a very general phenomenon: for

any input, the side that does the proposing in the G-S algorithm ends up with

the best possible stable matching (from their perspective), while the side that

does not do the proposing correspondingly ends up with the worst possible

stable matching.

1.2 Five Representative Problems
The Stable Matching Problem provides us with a rich example of the process of

algorithm design. For many problems, this process involves a few significant

steps: formulating the problem with enough mathematical precision that we

can ask a concrete question and start thinking about algorithms to solve

it; designing an algorithm for the problem; and analyzing the algorithm by

proving it is correct and giving a bound on the running time so as to establish

the algorithm’s efficiency.

This high-level strategy is carried out in practice with the help of a few

fundamental design techniques, which are very useful in assessing the inherent

complexity of a problem and in formulating an algorithm to solve it. As in any

area, becoming familiar with these design techniques is a gradual process; but

with experience one can start recognizing problems as belonging to identifiable

genres and appreciating how subtle changes in the statement of a problem can

have an enormous effect on its computational difficulty.

To get this discussion started, then, it helps to pick out a few representa-

tive milestones that we’ll be encountering in our study of algorithms: cleanly

formulated problems, all resembling one another at a general level, but differ-

ing greatly in their difficulty and in the kinds of approaches that one brings

to bear on them. The first three will be solvable efficiently by a sequence of

increasingly subtle algorithmic techniques; the fourth marks a major turning

point in our discussion, serving as an example of a problem believed to be un-

solvable by any efficient algorithm; and the fifth hints at a class of problems

believed to be harder still.

The problems are self-contained and are all motivated by computing

applications. To talk about some of them, though, it will help to use the

terminology of graphs. While graphs are a common topic in earlier computer

1.2 Five Representative Problems 13

(a)

(b)

Figure 1.3 Each of (a) and

(b) depicts a graph on four

nodes.

science courses, we’ll be introducing them in a fair amount of depth in

Chapter 3; due to their enormous expressive power, we’ll also be using them

extensively throughout the book. For the discussion here, it’s enough to think

of a graph G as simply a way of encoding pairwise relationships among a set

of objects. Thus, G consists of a pair of sets (V , E)—a collection V of nodes

and a collection E of edges, each of which “joins” two of the nodes. We thus

represent an edge e ∈ E as a two-element subset of V: e = {u, v} for some

u, v ∈ V, where we call u and v the ends of e. We typically draw graphs as in

Figure 1.3, with each node as a small circle and each edge as a line segment

joining its two ends.

Let’s now turn to a discussion of the five representative problems.

Interval Scheduling

Consider the following very simple scheduling problem. You have a resource—

it may be a lecture room, a supercomputer, or an electron microscope—and

many people request to use the resource for periods of time. A request takes

the form: Can I reserve the resource starting at time s, until time f ? We will

assume that the resource can be used by at most one person at a time. A

scheduler wants to accept a subset of these requests, rejecting all others, so

that the accepted requests do not overlap in time. The goal is to maximize the

number of requests accepted.

More formally, there will be n requests labeled 1, . . . , n, with each request

i specifying a start time si and a finish time fi. Naturally, we have si < fi for all

i. Two requests i and j are compatible if the requested intervals do not overlap:

that is, either request i is for an earlier time interval than request j (fi ≤ sj),

or request i is for a later time than request j (fj ≤ si). We’ll say more generally

that a subset A of requests is compatible if all pairs of requests i, j ∈ A, i �= j are

compatible. The goal is to select a compatible subset of requests of maximum

possible size.

We illustrate an instance of this Interval Scheduling Problem in Figure 1.4.

Note that there is a single compatible set of size 4, and this is the largest

compatible set.

Figure 1.4 An instance of the Interval Scheduling Problem.

14 Chapter 1 Introduction: Some Representative Problems

We will see shortly that this problem can be solved by a very natural

algorithm that orders the set of requests according to a certain heuristic and

then “greedily” processes them in one pass, selecting as large a compatible

subset as it can. This will be typical of a class of greedy algorithms that we

will consider for various problems—myopic rules that process the input one

piece at a time with no apparent look-ahead. When a greedy algorithm can be

shown to find an optimal solution for all instances of a problem, it’s often fairly

surprising. We typically learn something about the structure of the underlying

problem from the fact that such a simple approach can be optimal.

Weighted Interval Scheduling

In the Interval Scheduling Problem, we sought to maximize the number of

requests that could be accommodated simultaneously. Now, suppose more

generally that each request interval i has an associated value, or weight,

vi > 0; we could picture this as the amount of money we will make from

the ith individual if we schedule his or her request. Our goal will be to find a

compatible subset of intervals of maximum total value.

The case in which vi = 1 for each i is simply the basic Interval Scheduling

Problem; but the appearance of arbitrary values changes the nature of the

maximization problem quite a bit. Consider, for example, that if v1 exceeds

the sum of all other vi, then the optimal solution must include interval 1

regardless of the configuration of the full set of intervals. So any algorithm

for this problem must be very sensitive to the values, and yet degenerate to a

method for solving (unweighted) interval scheduling when all the values are

equal to 1.

There appears to be no simple greedy rule that walks through the intervals

one at a time, making the correct decision in the presence of arbitrary values.

Instead, we employ a technique, dynamic programming, that builds up the

optimal value over all possible solutions in a compact, tabular way that leads

to a very efficient algorithm.

Bipartite Matching

When we considered the Stable Matching Problem, we defined a matching to

be a set of ordered pairs of men and women with the property that each man

and each woman belong to at most one of the ordered pairs. We then defined

a perfect matching to be a matching in which every man and every woman

belong to some pair.

We can express these concepts more generally in terms of graphs, and in

order to do this it is useful to define the notion of a bipartite graph. We say that

a graph G = (V , E) is bipartite if its node set V can be partitioned into sets X

1.2 Five Representative Problems 15

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

Figure 1.5 A bipartite graph.

and Y in such a way that every edge has one end in X and the other end in Y.

A bipartite graph is pictured in Figure 1.5; often, when we want to emphasize

a graph’s “bipartiteness,” we will draw it this way, with the nodes in X and

Y in two parallel columns. But notice, for example, that the two graphs in

Figure 1.3 are also bipartite.

Now, in the problem of finding a stable matching, matchings were built

from pairs of men and women. In the case of bipartite graphs, the edges are

pairs of nodes, so we say that a matching in a graph G = (V , E) is a set of edges

M ⊆ E with the property that each node appears in at most one edge of M.

M is a perfect matching if every node appears in exactly one edge of M.

To see that this does capture the same notion we encountered in the Stable

Matching Problem, consider a bipartite graph G′ with a set X of n men, a set Y

of n women, and an edge from every node in X to every node in Y. Then the

matchings and perfect matchings in G′ are precisely the matchings and perfect

matchings among the set of men and women.

In the Stable Matching Problem, we added preferences to this picture. Here,

we do not consider preferences; but the nature of the problem in arbitrary

bipartite graphs adds a different source of complexity: there is not necessarily

an edge from every x ∈ X to every y ∈ Y, so the set of possible matchings has

quite a complicated structure. In other words, it is as though only certain pairs

of men and women are willing to be paired off, and we want to figure out

how to pair off many people in a way that is consistent with this. Consider,

for example, the bipartite graph G in Figure 1.5: there are many matchings in

G, but there is only one perfect matching. (Do you see it?)

Matchings in bipartite graphs can model situations in which objects are

being assigned to other objects. Thus, the nodes in X can represent jobs, the

nodes in Y can represent machines, and an edge (xi, yj) can indicate that

machine yj is capable of processing job xi. A perfect matching is then a way

of assigning each job to a machine that can process it, with the property that

each machine is assigned exactly one job. In the spring, computer science

departments across the country are often seen pondering a bipartite graph in

which X is the set of professors in the department, Y is the set of offered

courses, and an edge (xi, yj) indicates that professor xi is capable of teaching

course yj. A perfect matching in this graph consists of an assignment of each

professor to a course that he or she can teach, in such a way that every course

is covered.

Thus the Bipartite Matching Problem is the following: Given an arbitrary

bipartite graph G, find a matching of maximum size. If |X| = |Y| = n, then there

is a perfect matching if and only if the maximum matching has size n. We will

find that the algorithmic techniques discussed earlier do not seem adequate

16 Chapter 1 Introduction: Some Representative Problems

1

3

6

2

4 5

7

Figure 1.6 A graph whose

largest independent set has

size 4.

for providing an efficient algorithm for this problem. There is, however, a very

elegant and efficient algorithm to find a maximum matching; it inductively

builds up larger and larger matchings, selectively backtracking along the way.

This process is called augmentation, and it forms the central component in a

large class of efficiently solvable problems called network flow problems.

Independent Set

Now let’s talk about an extremely general problem, which includes most of

these earlier problems as special cases. Given a graph G = (V , E), we say

a set of nodes S ⊆ V is independent if no two nodes in S are joined by an

edge. The Independent Set Problem is, then, the following: Given G, find an

independent set that is as large as possible. For example, the maximum size of

an independent set in the graph in Figure 1.6 is four, achieved by the four-node

independent set {1, 4, 5, 6}.

The Independent Set Problem encodes any situation in which you are

trying to choose from among a collection of objects and there are pairwise

conflicts among some of the objects. Say you have n friends, and some pairs

of them don’t get along. How large a group of your friends can you invite to

dinner if you don’t want any interpersonal tensions? This is simply the largest

independent set in the graph whose nodes are your friends, with an edge

between each conflicting pair.

Interval Scheduling and Bipartite Matching can both be encoded as special

cases of the Independent Set Problem. For Interval Scheduling, define a graph

G = (V , E) in which the nodes are the intervals and there is an edge between

each pair of them that overlap; the independent sets in G are then just the

compatible subsets of intervals. Encoding Bipartite Matching as a special case

of Independent Set is a little trickier to see. Given a bipartite graph G′ = (V ′, E′),

the objects being chosen are edges, and the conflicts arise between two edges

that share an end. (These, indeed, are the pairs of edges that cannot belong

to a common matching.) So we define a graph G = (V , E) in which the node

set V is equal to the edge set E′ of G′. We define an edge between each pair

of elements in V that correspond to edges of G′ with a common end. We can

now check that the independent sets of G are precisely the matchings of G′.

While it is not complicated to check this, it takes a little concentration to deal

with this type of “edges-to-nodes, nodes-to-edges” transformation.2

2 For those who are curious, we note that not every instance of the Independent Set Problem can arise

in this way from Interval Scheduling or from Bipartite Matching; the full Independent Set Problem

really is more general. The graph in Figure 1.3(a) cannot arise as the “conflict graph” in an instance of

1.2 Five Representative Problems 17

Given the generality of the Independent Set Problem, an efficient algorithm

to solve it would be quite impressive. It would have to implicitly contain

algorithms for Interval Scheduling, Bipartite Matching, and a host of other

natural optimization problems.

The current status of Independent Set is this: no efficient algorithm is

known for the problem, and it is conjectured that no such algorithm exists.

The obvious brute-force algorithm would try all subsets of the nodes, checking

each to see if it is independent, and then recording the largest one encountered.

It is possible that this is close to the best we can do on this problem. We will

see later in the book that Independent Set is one of a large class of problems

that are termed NP-complete. No efficient algorithm is known for any of them;

but they are all equivalent in the sense that a solution to any one of them

would imply, in a precise sense, a solution to all of them.

Here’s a natural question: Is there anything good we can say about the

complexity of the Independent Set Problem? One positive thing is the following:

If we have a graph G on 1,000 nodes, and we want to convince you that it

contains an independent set S of size 100, then it’s quite easy. We simply

show you the graph G, circle the nodes of S in red, and let you check that

no two of them are joined by an edge. So there really seems to be a great

difference in difficulty between checking that something is a large independent

set and actually finding a large independent set. This may look like a very basic

observation—and it is—but it turns out to be crucial in understanding this class

of problems. Furthermore, as we’ll see next, it’s possible for a problem to be

so hard that there isn’t even an easy way to “check” solutions in this sense.

Competitive Facility Location

Finally, we come to our fifth problem, which is based on the following two-

player game. Consider two large companies that operate café franchises across

the country—let’s call them JavaPlanet and Queequeg’s Coffee—and they are

currently competing for market share in a geographic area. First JavaPlanet

opens a franchise; then Queequeg’s Coffee opens a franchise; then JavaPlanet;

then Queequeg’s; and so on. Suppose they must deal with zoning regulations

that require no two franchises be located too close together, and each is trying

to make its locations as convenient as possible. Who will win?

Let’s make the rules of this “game” more concrete. The geographic region

in question is divided into n zones, labeled 1, 2, . . . , n. Each zone i has a

Interval Scheduling, and the graph in Figure 1.3(b) cannot arise as the “conflict graph” in an instance

of Bipartite Matching.

18 Chapter 1 Introduction: Some Representative Problems

10 1 5 15 5 1 5 1 15 10

Figure 1.7 An instance of the Competitive Facility Location Problem.

value bi, which is the revenue obtained by either of the companies if it opens

a franchise there. Finally, certain pairs of zones (i, j) are adjacent, and local

zoning laws prevent two adjacent zones from each containing a franchise,

regardless of which company owns them. (They also prevent two franchises

from being opened in the same zone.) We model these conflicts via a graph

G = (V , E), where V is the set of zones, and (i, j) is an edge in E if the

zones i and j are adjacent. The zoning requirement then says that the full

set of franchises opened must form an independent set in G.

Thus our game consists of two players, P1 and P2, alternately selecting

nodes in G, with P1 moving first. At all times, the set of all selected nodes

must form an independent set in G. Suppose that player P2 has a target bound

B, and we want to know: is there a strategy for P2 so that no matter how P1

plays, P2 will be able to select a set of nodes with a total value of at least B?

We will call this an instance of the Competitive Facility Location Problem.

Consider, for example, the instance pictured in Figure 1.7, and suppose

that P2’s target bound is B = 20. Then P2 does have a winning strategy. On the

other hand, if B = 25, then P2 does not.

One can work this out by looking at the figure for a while; but it requires

some amount of case-checking of the form, “If P1 goes here, then P2 will go

there; but if P1 goes over there, then P2 will go here. . . . ” And this appears to

be intrinsic to the problem: not only is it computationally difficult to determine

whether P2 has a winning strategy; on a reasonably sized graph, it would even

be hard for us to convince you that P2 has a winning strategy. There does not

seem to be a short proof we could present; rather, we’d have to lead you on a

lengthy case-by-case analysis of the set of possible moves.

This is in contrast to the Independent Set Problem, where we believe that

finding a large solution is hard but checking a proposed large solution is easy.

This contrast can be formalized in the class of PSPACE-complete problems, of

which Competitive Facility Location is an example. PSPACE-complete prob-

lems are believed to be strictly harder than NP-complete problems, and this

conjectured lack of short “proofs” for their solutions is one indication of this

greater hardness. The notion of PSPACE-completeness turns out to capture a

large collection of problems involving game-playing and planning; many of

these are fundamental issues in the area of artificial intelligence.

Solved Exercises 19

Solved Exercises

Solved Exercise 1

Consider a town with n men and n women seeking to get married to one

another. Each man has a preference list that ranks all the women, and each

woman has a preference list that ranks all the men.

The set of all 2n people is divided into two categories: good people and

bad people. Suppose that for some number k, 1≤ k ≤ n − 1, there are k good

men and k good women; thus there are n − k bad men and n − k bad women.

Everyone would rather marry any good person than any bad person.

Formally, each preference list has the property that it ranks each good person

of the opposite gender higher than each bad person of the opposite gender: its

first k entries are the good people (of the opposite gender) in some order, and

its next n − k are the bad people (of the opposite gender) in some order.

Show that in every stable matching, every good man is married to a good

woman.

Solution A natural way to get started thinking about this problem is to

assume the claim is false and try to work toward obtaining a contradiction.

What would it mean for the claim to be false? There would exist some stable

matching M in which a good man m was married to a bad woman w.

Now, let’s consider what the other pairs in M look like. There are k good

men and k good women. Could it be the case that every good woman is married

to a good man in this matching M? No: one of the good men (namely, m) is

already married to a bad woman, and that leaves only k − 1 other good men.

So even if all of them were married to good women, that would still leave some

good woman who is married to a bad man.

Let w′ be such a good woman, who is married to a bad man. It is now

easy to identify an instability in M: consider the pair (m, w′). Each is good,

but is married to a bad partner. Thus, each of m and w′ prefers the other to

their current partner, and hence (m, w′) is an instability. This contradicts our

assumption that M is stable, and hence concludes the proof.

Solved Exercise 2

We can think about a generalization of the Stable Matching Problem in which

certain man-woman pairs are explicitly forbidden. In the case of employers and

applicants, we could imagine that certain applicants simply lack the necessary

qualifications or certifications, and so they cannot be employed at certain

companies, however desirable they may seem. Using the analogy to marriage

between men and women, we have a set M of n men, a set W of n women,

20 Chapter 1 Introduction: Some Representative Problems

and a set F ⊆ M × W of pairs who are simply not allowed to get married. Each

man m ranks all the women w for which (m, w) �∈ F , and each woman w′ ranks

all the men m′ for which (m′, w′) �∈ F .

In this more general setting, we say that a matching S is stable if it does

not exhibit any of the following types of instability.

(i) There are two pairs (m, w) and (m′, w′) in S with the property that

(m, w′) �∈ F , m prefers w′ to w, and w′ prefers m to m′. (The usual kind

of instability.)

(ii) There is a pair (m, w) ∈ S, and a man m′, so that m′ is not part of any

pair in the matching, (m′, w) �∈ F , and w prefers m′ to m. (A single man

is more desirable and not forbidden.)

(iii) There is a pair (m, w) ∈ S, and a woman w′, so that w′ is not part of

any pair in the matching, (m, w′) �∈ F , and m prefers w′ to w. (A single

woman is more desirable and not forbidden.)

(iv) There is a man m and a woman w, neither of whom is part of any pair

in the matching, so that (m, w) �∈ F . (There are two single people with

nothing preventing them from getting married to each other.)

Note that under these more general definitions, a stable matching need not be

a perfect matching.

Now we can ask: For every set of preference lists and every set of forbidden

pairs, is there always a stable matching? Resolve this question by doing one of

the following two things: (a) give an algorithm that, for any set of preference

lists and forbidden pairs, produces a stable matching; or (b) give an example

of a set of preference lists and forbidden pairs for which there is no stable

matching.

Solution The Gale-Shapley algorithm is remarkably robust to variations on

the Stable Matching Problem. So, if you’re faced with a new variation of the

problem and can’t find a counterexample to stability, it’s often a good idea to

check whether a direct adaptation of the G-S algorithm will in fact produce

stable matchings.

That turns out to be the case here. We will show that there is always a

stable matching, even in this more general model with forbidden pairs, and

we will do this by adapting the G-S algorithm. To do this, let’s consider why

the original G-S algorithm can’t be used directly. The difficulty, of course, is

that the G-S algorithm doesn’t know anything about forbidden pairs, and so

the condition in the While loop,

While there is a man m who is free and hasn’t proposed to

every woman,

Solved Exercises 21

won’t work: we don’t want m to propose to a woman w for which the pair

(m, w) is forbidden.

Thus, let’s consider a variation of the G-S algorithm in which we make

only one change: we modify the While loop to say,

While there is a man m who is free and hasn’t proposed to

every woman w for which (m, w) �∈ F.

Here is the algorithm in full.

Initially all m ∈ M and w ∈ W are free

While there is a man m who is free and hasn’t proposed to

every woman w for which (m, w) �∈ F

Choose such a man m

Let w be the highest-ranked woman in m’s preference list

to which m has not yet proposed

If w is free then

(m, w) become engaged

Else w is currently engaged to m′

If w prefers m′ to m then

m remains free

Else w prefers m to m′

(m, w) become engaged

m′ becomes free

Endif

Endif

Endwhile

Return the set S of engaged pairs

We now prove that this yields a stable matching, under our new definition

of stability.

To begin with, facts (1.1), (1.2), and (1.3) from the text remain true (in

particular, the algorithm will terminate in at most n2 iterations). Also, we

don’t have to worry about establishing that the resulting matching S is perfect

(indeed, it may not be). We also notice an additional pairs of facts. If m is

a man who is not part of a pair in S, then m must have proposed to every

nonforbidden woman; and if w is a woman who is not part of a pair in S, then

it must be that no man ever proposed to w.

Finally, we need only show

(1.9) There is no instability with respect to the returned matching S.

22 Chapter 1 Introduction: Some Representative Problems

Proof. Our general definition of instability has four parts: This means that we

have to make sure that none of the four bad things happens.

First, suppose there is an instability of type (i), consisting of pairs (m, w)

and (m′, w′) in S with the property that (m, w′) �∈ F , m prefers w′ to w, and w′

prefers m to m′. It follows that m must have proposed to w′; so w′ rejected m,

and thus she prefers her final partner to m—a contradiction.

Next, suppose there is an instability of type (ii), consisting of a pair

(m, w) ∈ S, and a man m′, so that m′ is not part of any pair in the matching,

(m′, w) �∈ F , and w prefers m′ to m. Then m′ must have proposed to w and

been rejected; again, it follows that w prefers her final partner to m′—a

contradiction.

Third, suppose there is an instability of type (iii), consisting of a pair

(m, w) ∈ S, and a woman w′, so that w′ is not part of any pair in the matching,

(m, w′) �∈ F , and m prefers w′ to w. Then no man proposed to w′ at all;

in particular, m never proposed to w′, and so he must prefer w to w′—a

contradiction.

Finally, suppose there is an instability of type (iv), consisting of a man

m and a woman w, neither of which is part of any pair in the matching,

so that (m, w) �∈ F . But for m to be single, he must have proposed to every

nonforbidden woman; in particular, he must have proposed to w, which means

she would no longer be single—a contradiction.

Exercises

1. Decide whether you think the following statement is true or false. If it is

true, give a short explanation. If it is false, give a counterexample.

True or false? In every instance of the Stable Matching Problem, there is a

stable matching containing a pair (m, w) such that m is ranked first on the

preference list of w and w is ranked first on the preference list of m.

2. Decide whether you think the following statement is true or false. If it is

true, give a short explanation. If it is false, give a counterexample.

True or false? Consider an instance of the Stable Matching Problem in which

there exists a man m and a woman w such that m is ranked first on the

preference list of w and w is ranked first on the preference list of m. Then in

every stable matching S for this instance, the pair (m, w) belongs to S.

3. There are many other settings in which we can ask questions related

to some type of “stability” principle. Here’s one, involving competition

between two enterprises.

Exercises 23

Suppose we have two television networks, whom we’ll call A and B.

There are n prime-time programming slots, and each network has n TV

shows. Each network wants to devise a schedule—an assignment of each

show to a distinct slot—so as to attract as muchmarket share as possible.

Here is the way we determine how well the two networks perform

relative to each other, given their schedules. Each show has a fixed rating,

which is based on the number of people who watched it last year; we’ll

assume that no two shows have exactly the same rating. A networkwins a

given time slot if the show that it schedules for the time slot has a larger

rating than the show the other network schedules for that time slot. The

goal of each network is to win as many time slots as possible.

Suppose in the opening week of the fall season, Network A reveals a

schedule S and Network B reveals a schedule T . On the basis of this pair

of schedules, each network wins certain time slots, according to the rule

above.We’ll say that the pair of schedules (S, T) is stable if neither network

can unilaterally change its own schedule and win more time slots. That

is, there is no schedule S′ such that Network A wins more slots with the

pair (S′, T) than it did with the pair (S, T); and symmetrically, there is no

schedule T ′ such that Network B wins more slots with the pair (S, T ′) than

it did with the pair (S, T).

The analogue of Gale and Shapley’s question for this kind of stability

is the following: For every set of TV shows and ratings, is there always

a stable pair of schedules? Resolve this question by doing one of the

following two things:

(a) give an algorithm that, for any set of TV shows and associated

ratings, produces a stable pair of schedules; or

(b) give an example of a set of TV shows and associated ratings for

which there is no stable pair of schedules.

4. Gale and Shapley published their paper on the Stable Matching Problem

in 1962; but a version of their algorithm had already been in use for

ten years by the National Resident Matching Program, for the problem of

assigning medical residents to hospitals.

Basically, the situation was the following. There were m hospitals,

each with a certain number of available positions for hiring residents.

There were n medical students graduating in a given year, each interested

in joining one of the hospitals. Each hospital had a ranking of the students

in order of preference, and each student had a ranking of the hospitals

in order of preference. We will assume that there were more students

graduating than there were slots available in the m hospitals.

24 Chapter 1 Introduction: Some Representative Problems

The interest, naturally, was in finding a way of assigning each student

to at most one hospital, in such a way that all available positions in all

hospitals were filled. (Since we are assuming a surplus of students, there

would be some students who do not get assigned to any hospital.)

We say that an assignment of students to hospitals is stable if neither

of the following situations arises.

. First type of instability: There are students s and s′, and a hospital h,

so that

– s is assigned to h, and

– s′ is assigned to no hospital, and

– h prefers s′ to s.

. Second type of instability: There are students s and s′, and hospitals

h and h′, so that

– s is assigned to h, and

– s′ is assigned to h′, and

– h prefers s′ to s, and

– s′ prefers h to h′.

So we basically have the Stable Matching Problem, except that (i)

hospitals generally wantmore than one resident, and (ii) there is a surplus

of medical students.

Show that there is always a stable assignment of students to hospi-

tals, and give an algorithm to find one.

5. The Stable Matching Problem, as discussed in the text, assumes that all

men and women have a fully ordered list of preferences. In this problem

wewill consider a version of the problem in whichmen andwomen can be

indifferent between certain options. As before we have a set M of n men

and a set W of n women. Assume each man and each woman ranks the

members of the opposite gender, but now we allow ties in the ranking.

For example (with n = 4), a woman could say that m1 is ranked in first

place; second place is a tie between m2 and m3 (she has no preference

between them); and m4 is in last place. We will say that w prefers m to m′

if m is ranked higher than m′ on her preference list (they are not tied).

With indifferences in the rankings, there could be two natural notions

for stability. And for each, we can ask about the existence of stable

matchings, as follows.

(a) A strong instability in a perfect matching S consists of a man m and

a woman w, such that each of m and w prefers the other to their

partner in S. Does there always exist a perfect matching with no

Exercises 25

strong instability? Either give an example of a set of men and women

with preference lists for which every perfect matching has a strong

instability; or give an algorithm that is guaranteed to find a perfect

matching with no strong instability.

(b) A weak instability in a perfect matching S consists of a man m and

a woman w, such that their partners in S are w′ and m′, respectively,

and one of the following holds:

– m prefers w to w′, and w either prefers m to m′ or is indifferent

between these two choices; or

– w prefers m to m′, and m either prefers w to w′ or is indifferent

between these two choices.

In other words, the pairing between m and w is either preferred

by both, or preferred by one while the other is indifferent. Does

there always exist a perfect matching with no weak instability? Either

give an example of a set of men and women with preference lists

for which every perfect matching has a weak instability; or give an

algorithm that is guaranteed to find a perfect matching with no weak

instability.

6. Peripatetic Shipping Lines, Inc., is a shipping company that owns n ships

and provides service to n ports. Each of its ships has a schedule that says,

for each day of the month, which of the ports it’s currently visiting, or

whether it’s out at sea. (You can assume the “month” here has m days,

for some m > n.) Each ship visits each port for exactly one day during the

month. For safety reasons, PSL Inc. has the following strict requirement:

(†) No two ships can be in the same port on the same day.

The company wants to perform maintenance on all the ships this

month, via the following scheme. They want to truncate each ship’s

schedule: for each ship Si, there will be some day when it arrives in its

scheduled port and simply remains there for the rest of the month (for

maintenance). This means that Si will not visit the remaining ports on

its schedule (if any) that month, but this is okay. So the truncation of

Si’s schedule will simply consist of its original schedule up to a certain

specified day on which it is in a port P; the remainder of the truncated

schedule simply has it remain in port P.

Now the company’s question to you is the following: Given the sched-

ule for each ship, find a truncation of each so that condition (†) continues

to hold: no two ships are ever in the same port on the same day.

Show that such a set of truncations can always be found, and give an

algorithm to find them.

26 Chapter 1 Introduction: Some Representative Problems

Example. Suppose we have two ships and two ports, and the “month” has

four days. Suppose the first ship’s schedule is

port P1; at sea; port P2; at sea

and the second ship’s schedule is

at sea; port P1; at sea; port P2

Then the (only) way to choose truncations would be to have the first ship

remain in port P2 starting on day 3, and have the second ship remain in

port P1 starting on day 2.

7. Some of your friends are working for CluNet, a builder of large commu-

nication networks, and they are looking at algorithms for switching in a

particular type of input/output crossbar.

Here is the setup. There are n input wires and n output wires, each

directed from a source to a terminus. Each input wire meets each output

wire in exactly one distinct point, at a special piece of hardware called

a junction box. Points on the wire are naturally ordered in the direction

from source to terminus; for two distinct points x and y on the same

wire, we say that x is upstream from y if x is closer to the source than

y, and otherwise we say x is downstream from y. The order in which one

input wire meets the output wires is not necessarily the same as the order

in which another input wire meets the output wires. (And similarly for

the orders in which output wires meet input wires.) Figure 1.8 gives an

example of such a collection of input and output wires.

Now, here’s the switching component of this situation. Each input

wire is carrying a distinct data stream, and this data stream must be

switched onto one of the output wires. If the stream of Input i is switched

onto Output j, at junction box B, then this stream passes through all

junction boxes upstream from B on Input i, then through B, then through

all junction boxes downstream from B on Output j. It does not matter

which input data stream gets switched onto which output wire, but

each input data stream must be switched onto a different output wire.

Furthermore—and this is the tricky constraint—no two data streams can

pass through the same junction box following the switching operation.

Finally, here’s the problem. Show that for any specified pattern in

which the input wires and output wires meet each other (each pair meet-

ing exactly once), a valid switching of the data streams can always be

found—one in which each input data stream is switched onto a different

output, and no two of the resulting streams pass through the same junc-

tion box. Additionally, give an algorithm to find such a valid switching.

Exercises 27

Junction

Junction

Junction

Junction

Input 1

(meets Output 2

before Output 1)

Input 2

(meets Output 1

before Output 2)

Output 1

(meets Input 2

before Input 1)

Output 2

(meets Input 2

before Input 1)

Figure 1.8 An example with two input wires and two output wires. Input 1 has its

junction with Output 2 upstream from its junction with Output 1; Input 2 has its

junction with Output 1 upstream from its junction with Output 2. A valid solution is

to switch the data stream of Input 1 onto Output 2, and the data stream of Input 2

onto Output 1. On the other hand, if the stream of Input 1 were switched onto Output

1, and the stream of Input 2 were switched onto Output 2, then both streams would

pass through the junction box at the meeting of Input 1 and Output 2—and this is not

allowed.

8. For this problem, we will explore the issue of truthfulness in the Stable

Matching Problem and specifically in the Gale-Shapley algorithm. The

basic question is: Can a man or a woman end up better off by lying about

his or her preferences? More concretely, we suppose each participant has

a true preference order. Now consider a woman w. Suppose w prefersman

m to m′, but both m and m′ are low on her list of preferences. Can it be the

case that by switching the order of m and m′ on her list of preferences (i.e.,

by falsely claiming that she prefers m′ to m) and running the algorithm

with this false preference list, w will end up with a man m′′ that she truly

prefers to both m and m′? (We can ask the same question for men, but

will focus on the case of women for purposes of this question.)

Resolve this question by doing one of the following two things:

(a) Give a proof that, for any set of preference lists, switching the

order of a pair on the list cannot improve a woman’s partner in the Gale-

Shapley algorithm; or

28 Chapter 1 Introduction: Some Representative Problems

(b) Give an example of a set of preference lists for which there is

a switch that would improve the partner of a woman who switched

preferences.

Notes and Further Reading

The Stable Matching Problem was first defined and analyzed by Gale and

Shapley (1962); according to David Gale, their motivation for the problem

came from a story they had recently read in the New Yorker about the intricacies

of the college admissions process (Gale, 2001). Stable matching has grown

into an area of study in its own right, covered in books by Gusfield and Irving

(1989) and Knuth (1997c). Gusfield and Irving also provide a nice survey of

the “parallel” history of the Stable Matching Problem as a technique invented

for matching applicants with employers in medicine and other professions.

As discussed in the chapter, our five representative problems will be

central to the book’s discussions, respectively, of greedy algorithms, dynamic

programming, network flow, NP-completeness, and PSPACE-completeness.

We will discuss the problems in these contexts later in the book.

